As reported by engadget,

At some point when you were a toddler, you learned how to pick yourself up after falling and eventually how to walk on your own two feet. You likely had encouragement from your parents, but for the most part, you learned through trial and error. That’s not how robots like Spot and Atlas from Boston Dynamics learn to walk and dance. They’re meticulously coded to tackle the tasks we throw at them. The results can be impressive, but it can also leave them unable to adapt to situations that aren’t covered by their software. A joint team of researchers from Zhejiang University and the University of Edinburgh claim they’ve developed a better way.

Yang et al

In a recent paper published in the journal Science Robotics, they detailed an AI reinforcement approach they used to allow their dog-like robot, Jueying, to learn how to walk and recover from falls on its own. The team told Wired they first trained software that could guide a virtual version of the robot. It consisted of eight AI “experts” that they trained to master a specific skill. For instance, one became fluent in walking, while another learned how to balance. Each time the digital robot successfully completed a task, the team rewarded it with a virtual point. If all of that sounds familiar, it’s because it’s the same approach Google recently used to train its groundbreaking MuZero algorithm 

Source link: engadget


Please enter your comment!
Please enter your name here